热门标签-网站地图-注册-登陆-手机版-投稿 3D打印网,中国3D打印行业门户网!
当前位置:主页 > 3D打印新闻 > 深度解读 > 正文

3D打印技术在生物高分子中的应用综述

时间:2015-12-25 11:24 来源:OFweek 3D打印网 作者:中国3D打印网 阅读:

    今年,要问什么科技名词最热?3D打印可谓是首屈一指。3D打印技术被称为"桌面上的创意工厂"。先用相关软件将产品图纸转化为3D图像数据并上传电脑,放入相应的材料后,打印喷头就会根据图像数据逐层将东西打印出来,再堆叠在一起成为一个立体物品。由于采用"添加制造技术",因此更加节省原材料和人工,而且可制作形态各异的物品。理论上,只要电脑可以设计出的造型,3D打印机均可打印出来。


      3D 打印技术的基本制造过程是按照"分层制造、逐层叠加"的原理。例如,可以根据CT 等成像数据,经计算机3D 建模转换后,再以STL 格式文件输入到计算机系统中,并分层成二维切片数据,通过计算机控制的3D 打印系统进行逐层打印,叠加后最终获得三维产品。 生物医用高分子材料是以医用为目的,用于和活体组织接触,具有诊断、治疗或替换机体中组织、器官或增进其功能的高分子材料。在功能高分子材料领域, 生物医用高分子材料可谓异军突起, 目前已成为发展最快的一个重要分支。

然而,让3D打印与生物医用高分子相碰撞会产生什么样绚丽的火花呢?

在生物医学领域,生物3D打印技术所具有的快速性、准确性,及擅长制作复杂形状实体的特性使它在生物医学领域有着非常广泛的应用前景。为什么?每个人的身体构造、病理状况都存在特殊性和差异化,当3D打印与医学影像建模、与仿真技术结合之后,就能够在人工假体、植入体、人工组织器官的制造方面产生巨大的推动效应。

(一)3D打印生物医用高分子

正如上文所说,四年前仍旧是高精尖技术的3D打印手段已经被广泛运用在科学研究的各种领域,而它在生物医用高分子领域的惊人应用拓展和巨大市场需求使得这二者的结合迅猛发展。其中,概括起来,3D打印生物医用高分子的具体可操作的实现手段分为以下四种:

1.光固化立体印刷

光固化立体印刷技术( SLA) 使用的原料为液态光敏树脂,也可在其中加入其他材料形成复合材料。它是采用计算机控制下的紫外激光束以计算机模型的各分层截面为路径逐点扫描,使被扫描区内的树脂薄层产生光聚合或光交联反应后固化,当一层固化完成后,在垂直方向移动工作台,使先前固化的树脂表面覆盖一层新的液态树脂,逐层扫描、固化,最终获得三维原型。

SLA 技术具有高精度、性能稳定、产品力学强度高等优点,其缺点是成型产品需要清洗除去杂质,可能造成产品变形。SLA 技术是目前技术最成熟和应用最广的3D 打印技术.该技术获得的3D 成型材料具有可调控的孔尺寸、孔隙率、贯通性和孔分布。

脂肪族聚酯由于具有良好的生物相容性和可调节的生物降解性能,因此目前被广泛应用于生物医用领域。以脂肪族聚酯为原料的3D 打印成型技术也受到了越来越多的关注。

日本东京医科大学的Matsuo 等以聚( L-乳酸/HA)为原料,制备了可吸收多孔托架,辅助牙齿移植材料一起,用于下颌骨肿瘤切除后的下颌骨重建,获得了比金属钛支架更好的修复效果。

水凝胶是一种具有高水含量的亲水性或双亲性聚合物三维网络。由于水凝胶具有良好的生物相容性,以及与人体软组织相似的力学性质,因此被广泛应用于组织工程支架材料与药物的可控释放中。目前,传统的水凝胶制备方法主要是通过高分子链间的化学反应或物理相互作用,难以实现对水凝胶外部和内部结构的精确调控。而3D打印技术则能实现对材料外部形态和内部微结构的精确调控,有利于调控细胞的分布,以及材料与生物体的匹配,因此具有独特的优势。

康奈尔大学的Butcher以PEG-DA / 藻酸盐复合原料制备了主动脉瓣水凝胶支架, 该水凝胶的弹性模量可变。制备较大的瓣膜可获得更高的精确度。种植于水凝胶支架上的猪主动脉瓣间质细胞在培养21 天后具有接近100% 的存活率。

2.熔融沉积成型

熔融沉积成型( FDM) 是采用热熔喷头,使得熔融状态的材料按计算机控制的路径挤出、沉积,并凝固成型,经过逐层沉积、凝固,最后除去支撑材料,得到所需的三维产品。FDM 技术所使用的原料通常为热缩性高分子,包括ABS、聚酰胺、聚酯、聚碳酸酯、聚乙烯、聚丙烯等。该技术特点是成型产品精度高、表面质量好、成型机结构简单、无环境污染等,但是其缺点是操作温度较高。

近年来,利用FDM 技术制备生物医用高分子材料也受到越来越多的重视,尤其是以脂肪族聚酯为原料制备生物可降解支架材料,取得了相当多的进展。

新加坡南洋理工大学的Teoh 等使用PCL 为原料,通过FDM 技术制备了蜂窝状、内部完全贯通的可降解3D 组织工程支架。材料的孔隙率与压缩性质具有高度的相关性。人初级成纤维细胞与材料共培养后,3~ 4 周后发现细胞完全充满支架的空隙。当将表面含有骨髓间充质细胞的3D 支架移植到猪眼眶的创口后,获得比没有支架材料或没有种植细胞的支架更好的新骨形成效果。该结果表明,这种3D 打印的PCL 支架可望应用于骨软骨修复方面。

3.选择性激光烧结

选择性激光烧结( SLS) 是采用激光束按照计算机指定路径扫描,使工作台上的粉末原料熔融、粘结固化。当一层扫描完毕,移动工作台,使固化层表面铺上新的粉末原料,经过逐层扫描粘结,获得三维材料。与SLA 技术通过紫外光逐层引发液态树脂原料发生聚合或交联反应不同,SLS 技术是通过激光产生高温使粉末原料表面熔融、相互粘结来形成三维材料。  SLS 技术常用的原料包括塑料、陶瓷、金属粉末等。其优点是加工速度快,且无需使用支撑材料,但缺点是成型产品表面较粗糙,需后处理,加工过程中会产生粉尘和有毒气体,而且持续高温可能造成高分子材料的降解,以及生物活性分子的变形或细胞的凋亡。

(责任编辑:admin)

weixin
评论
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价: