热门标签-网站地图-注册-登陆-手机版-投稿 3D打印网,中国3D打印行业门户网!
当前位置:主页 > 3D打印新闻 > 3D打印资讯 > 正文

盘点3D打印技术在飞机发动机上的应用(3)

时间:2017-06-28 22:26 来源:3D科学谷 作者:中国3D打印网 阅读:

block 霍尼韦尔

    霍尼韦尔已准备让金属3D打印技术走出实验室,正式应用在航空制造中。目前,他们正在印度Bangalore的3D打印实验室中测试金属粉末,该粉末材料将用于打印1000个金属零部件。霍尼韦尔还将突破目前金属3D打印材料种类的限制,尝试将超过40种新型金属3D打印粉末材料应用在航空制造中。铝和镍的3D打印应用尤其受到重视,霍尼韦尔将用它们3D打印TPE331引擎中的7个零部件。

Honeywell 3d printed parts 2

column_left齿轮传动涡扇发动机 column_left

block 普惠、MTU

    MTU在研发过程中,包括涡轮箔、燃料喷射器和其他零件往往都是3D打印的,并且设计师还可以通过3D打印的技术减少零件数量,并且降低零件重量,提高零件强度,3D打印已经被证明在这个过程中的可靠之处。

mtu_1

    齿轮传动涡扇发动机目前的主要供给机型是Aibus A320neo,这是MTU航空发动机与普惠合作的项目。而Embraer,Bombardier, Erkut和Mitsuibishi等公司也与MTU航空发动机签订了齿轮传动涡扇发动机的合同, 另外,MTU还参与宽体飞机的发动机制造,包括与俄罗斯航空航天的合作。

column_left其他 column_left

 block 印度斯坦航空

INTECH DMLS为印度斯坦航空公司(HAL)所交付的25KN发动机燃烧室机匣是一种复杂的薄壁零部件,25KN发动机燃烧室机匣的制造材料为镍基高温合金,此类零部件不仅具有大型复杂结构,而且对结构完整性要求高。在使用传统制造技术加工此类零件时存在众多难点,例如:零件壁厚较薄,加工时容易变形及产生让刀现象, 难以保证加工精度;在加工时需要将毛坯中的大部分材料作为切削余量加以去除,切削加工量大;由于材料导热性较差,在切削加工中切削温度高,加工硬化现象严重,刀具磨损严重等。

 

Intech DMLS combution chamber 2

 

这些难点使发动机燃烧室机匣的制造周期长,制造成本高,INTECH DMLS公司表示传统工艺制造该零部件的周期为18-24个月,而Intech DMLS研发和制造燃烧室机匣的周期为3-4个月,使用的制造工艺包括镍基高温合金机匣的3D打印、热处理、机加工、表面处理,以及对5个独立3D打印部件的激光焊接工艺。

典型专利

column_left专利column_left

block 3D打印燃料喷射器和冷却系统专利

GE-参考资料:US009551490

    为了克服燃烧气体流场中燃烧气体的高动量,必须通过喷油器引导大量压缩空气以将燃料充分推入燃烧气流中。燃料必须在相对较高的压力下供给,以充分推动燃料进入燃烧气体流场。

    解决这些问题的当前解决方案包括将燃料喷射器的少一部分通过衬里向内径延伸到燃烧气体流场中。然而,这种方法将燃料喷射器暴露在热燃烧气体中,可能会影响组件的机械寿命和导致燃料焦炭积累。通过3D打印技术,GE改进了用于将燃料喷射器延伸到燃烧气体流场中的冷却系统。

     GE获批的专利还包括用于冷却延伸到燃烧气体流场的燃料喷射器的系统。该系统包括通过燃烧室限定燃烧气流路径的衬里、通过衬里延伸的燃料喷射器开口和燃料喷射器。通过激光融化技术,每层的尺寸在0.0005英寸到大约0.001英寸之间。GE在该专利中所使用的是(但不限于)EOSINT™ M 270 , 以及PHENIX PM250, 或者EOSINT™ M 250 。GE所采用的金属粉粉末成分中含有钴铬,例如(但不限于)HS1888和INCO625。金属粉末的粒径大约在10微米到74微米之间,最好是在大约15微米和大约30微米之间。

column_left专利column_left

block 涡轮叶片上打印高温陶瓷传感器

GE-参考资料US9546928B2

    打印传感器的过程开始于用雾发生器雾化纳米银导电墨水,先是通过流空气动力学诱导沉积头,产生鞘气环状流。通过喷嘴对准基板以同轴流量集中喷射。材料的图案是通过数控命令来完成的,而在基板保持固定的同时,沉积头和基板之间的距离保持不变,以确保的材料准确的沉积。

    油墨沉积后,再经过热处理,使得传感器具有正确的导电性和机械性能。另外局部处理是可能的,使用激光处理工艺,允许使用的材料具有非常低的温度公差。最终的结果是高质量的薄膜,细如10纳米的边缘定义带来高性能的表现。

质量控制与后处理是一大关键

block 后处理与质量检测

    激光加工过程中,熔池的凝固行为对激光3D打印最终成形件的综合性能具有至关重要的影响。凝固速率过慢引起的晶粒粗化将极大地降低材料强度;凝固速率过快易造成制件内部微裂纹和孔隙等加工缺陷,导致制件使用过程中的提前失效。同时,伴随凝固行为产生的残余应力集中问题与制件尺寸精度和表面粗糙度有密切联系。

     无疑,最好的质量控制是过程中控制,但是对于打印结果的检测仍是必不可少的。而令人头疼的问题是,现今的无损探伤检测技术对于金属3D打印结果来说,并不是万能的,一个显著的问题是对于比较简单的产品设计,现在的NDE方法是没问题的,但是随着产品的复杂化,现在的NDE方法遇到了极大的挑战。

     对于金属增材制造的复杂性可以区分为五个层面:1 简单的零件、2 优化的零件、3 带有嵌入式设计的零件、4 为增材制造设计的零件、5 复杂的胞元结构零件。

    为了达到对复杂零件的检测,宾州大学采取了计算机X射线断层成像(X-Ray Computed Tomography)检测技术,该技术不仅被用于打印零件的检测,还被用于后处理零件的检测。

     X射线断层成像(X-Ray Computed Tomography)是一种影像诊断学的检查。这一技术曾被称为电脑轴切面断层影像(Computed Axial Tomography)。 X射线断层成像是一种利用数位几何处理後重建的三维放射线影像。GE也将计算机X射线断层成像技术用于其著名的喷油嘴的检测中,经过热等静压的后处理工艺,GE改进了产品的内部晶体结构,并提高了产品的抗疲劳性能。

      通 实现对复杂零件的检测,当前的增材制造行业有望将过程中加工参数与模型结构以及零件机械性能建立有效的相关性分析,随着材料特征数据库的建立,以及对加工过程中几何形状特征与重要的工艺变量之间关系的理解,3D科学谷认为我们将有望建立增材制造领域的知识专家系统,从而将金属增材制造推向另一个高度。

面向未来

总之,3D打印在航空航天领域的应用前景是美好的,同时也存在很多挑战。包括:

-当前的飞机制造商并不了解增材制造设备,也很难提出对设备如何升级的要求,下一步飞机制造商需要更多的参与到增材制造设备的开发中来。

-增材制造设备厂商必须提高做工程的能力和提升材料专业度。当前增材制造设备厂商缺乏开发高端航空航天零部件的能力,缺乏开发质量跟踪和控制设备的能力。增材制造设备厂商不能局限于做设备制造,而应该发展围绕着增材制造、增材制造材料一系列的系统服务商的能力。

-增材制造设备厂商需要开源设备材料,虽然接受其他的材料会带来竞争,但灵活性提高了才能使得航空航天制造商开发更多的应用。开源设备材料也会使得设备本身更容易受市场欢迎。

-软件之间需要更好的衔接。目前脱节的地方很多,使得做出一个完整的零件过程变得磕磕绊绊,这不利于行业的绩效。

-需要集成控制系统到增材制造设备里。目前市场上很少有系统的工具来监测和跟踪增材制造的过程,这导致需要大量的测试件,而且需要昂贵的后处理。

(责任编辑:admin)

weixin
评论
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价: