热门标签-网站地图-注册-登陆 手机版:m.3ddayin.net 3D打印网,中国3D打印行业门户网!
当前位置:主页 > 3D打印材料 > 新材料 > 正文

3D打印高熵合金基复合材料,纳米陶瓷相增强后在低温条件下具有优异强塑性

时间:2022-06-06 09:54 来源:材料学网 作者:admin 阅读:
极光尔沃
         导读:增材制造(AM)中/高熵合金(MEA / HEA)及其复合材料的低温机械性能和变形行为很少得到研究。本文系统地研究了增材制造的CoCrFeMnNi高熵合金(HEA)和2 wt.% TiC / CoCrFeMnNi复合材料(HEC)在室温(293 K)和低温(93 K)下的机械性能、变形行为和增强机理。TiC纳米颗粒促进致密化行为,并且它们均匀地分布在HEC样品的亚结构周围和内部。拉伸试验表明,当温度从293 K降至93 K时,HEA和HEC样品的强度和延展性可以同时增加。HEA和HEC样品屈服强度增加的差异归因于位错强化和Orowan强化的差异,分别与温度相关的热膨胀系数和弹性模量有关。然而,HEC样品的延展性增加(10.3%)小于HEA样品(26.4%),因为在HEC样品的低温变形过程中不会产生额外的硬化机理。本研究为低温应用设计强度和延展性良好结合的材料提供了一条新途径。
         中/高熵合金(MEA / HEA)是一种新开发的材料类别,在结构材料领域引起了广泛的兴趣。特别是,在HEA系列中首次开发的等原子CoCrFeMnNi具有优越的综合性能,如出色的室温和低温力学性能,耐氢脆性和断裂韧性。尽管有这些优点,CoCrFeMnNi HEA仍然存在一些问题,例如屈服强度相对较低。因此,必须开发新的途径来实现具有更好机械性能的高性能面心立方体(FCC)HEA材料,例如制造方法,成分改性或两者的组合。
          目前高熵合金材料的制备方法主要有粉末冶金、电磁悬浮铸造或真空电弧熔炼以及随后的冷/热轧等。然而,使用这些传统的制造方法很难实现精细的微观结构和几何复杂的结构。增材制造(AM)的最新进展为制造高性能金属材料提供了一条新途径。作为金属材料的经典激光增材制造(AM)技术,激光粉末床熔合(LPBF)技术可以直接获得具有材料、结构、性能集成的复杂三维(3D)组件。近年来,AM制造HEA的研究课题在AM的研究领域引起了人们的广泛关注。除了在制造几何复杂组分方面的优势外,具有高密度位错的非均相细胞亚结构的形成在强化和增韧HEA材料方面起着重要作用,通过在AM制造的HEA变形过程中调节位错运动。为了进一步提高CoCrFeMnNi HEA的性能,在基质中添加增强剂是一种有效的方法。陶瓷颗粒被认为是强化纯金属材料的绝佳候选者,因为它们具有低密度,高硬度和弹性模量以及非凡的耐磨性,已成功用于增材制造的铁基复合材料,镍高温合金基复合材料和Al金属基复合材料。然而,迄今为止,很少有人研究过由陶瓷颗粒增强的AM制造的MEA / HEA。

低温环境对HEA的力学性能提出了更高的要求。通过传统加工制造的具有FCC结构的HEA通常表现出优异的低温强度和延展性。Gludovatz等人,首先发现了一种抗断裂的CoCrFeMnNi高熵合金和一种用于低温应用的CoCrNi中等熵合金的出色抗损伤性。然而,只有少数关于AM制造的MEA / HEA的低温力学性能的研究,并且在MEA / HEA基质复合材料领域没有报告(据作者所知)。大多数报告发现,在AM制造的FCC MEA / HEA中同时增强了强度 - 延展性。然而,Weng等人发现,当温度从298 K下降到143 K时,CoCrNi MEA的强度几乎线性增加,而伸长率下降。这种行为归因于晶界与大面积孪生边界的相互作用,其沿晶界形成微虚,并最终在低温下在较高应力下导致过早失效。Kim等人也发现了类似的结果,其中增材制造制造的原位纳米氧化物增强CoCrFeMnNi HEA基体纳米复合材料在低温下伸长率降低。因此,高熵合金的低温变形机理有待进一步研究。陶瓷颗粒是提高屈服强度的良好候选者。一些研究检查了微粒陶瓷颗粒在低温下增强的Al基复合材料的力学性能,关于MEA / HEA基复合材料的低温性能和增强机理的研究从未报道过。

在此,华东理工大学Xiancheng Zhang教授团队探讨了TiC纳米颗粒对CoCrFeMnNi HEAs在293 K和93 K下印刷时的微观结构和力学性能的影响。系统地研究非增强材料和增强材料在293 K和93 K下演变的变形结构,以揭示机械性能的差异。通过基于激光的增材制造,成功制备了由纳米颗粒增强的CoCrFeMnNi HEA基体复合材料。与室温性能相比,HEA和HEC样品在低温下的强度和延展性均同时得到提高。TiC纳米颗粒在293 K和93 K时显著促进了HEC强度和延展性的组合,并且HEC的低温拉伸强度(1506±6.6 MPa)是AM制造的MEA / HEAs报告的最高值。对于HEA样品,强度和延展性的显着提高归因于多个孪生体系在93 K下引起的额外硬化贡献。当温度从293 K降至93 K时,HEC样品的屈服强度增量(344.4 MP)显著高于HEA(229.0 MPa)。本研究以题“Exceptional strength-ductility combination of additively manufactured high-entropy alloy matrix composites reinforced with TiC nanoparticles at room and cryogenic temperatures”发表在Additive Manufacturing 上。

链接:https://www.sciencedirect.com/sc ... i/S2214860422003153

图 1.粉末特性:(a)和(b)初始HEA粉末的典型形貌和晶粒尺寸,(c)球磨前后HEA粉末的粒度分布,(d)和(e)HEC粉末共混物的典型形貌,(f)HEC的元素分布,表明TiC纳米颗粒(用f中的白色箭头标记)在HEA粉末表面的均匀分布。
图 2.。(a-c)复合粉末和LPBF加工的制备过程的图形表示,包括粉末混合,复合材料粉末和扫描策略,分别,(d)激光功率对HEA和HEC样品中缺陷分布的影响,(e)激光功率与HEA和HEC样品相对密度之间的关系。

图 3.沿横向-法线方向(TD-ND)平面的背散射衍射(BSD)图像:(a-b)HEA;(d-e)HEC,其中孔隙和裂纹分别用黄色和红色箭头标记,分别对HEA和HEC样品进行(c)和(f)缺陷分析,分别对HEA样品和HEC样品进行(g)和(h)EDS分析。

(责任编辑:admin)

weixin
评论
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价: