-
2023-02-02·韦伯州立大学使用3D打印机制造高科技复合材料零件,推进航空航天研究
日前,韦伯州立大学(Weber State University)使用基于复合材料的3D打印 (CBAM) 系统来推进犹他州北部航空航天和国防生态系统的研究。 在米勒高级研究和解决方案中心(犹他州希尔空军基地)的CBAM 3D打印机 该大学...
-
2023-02-02·双光子聚合 (2PP) 3D打印技术制造陶瓷超材料的技术诞生!
传统上,双光子聚合 (2PP) 3D打印技术用于处理光敏树脂材料,这与通常完全不透明的陶瓷树脂和陶瓷浆料截然相反。然而,根据3D科学谷的市场研究,最新的发展将双光子聚合 (2PP) 3D打印技术用于处理一种透明且可光固化...
-
2023-01-30·顶刊《Acta Materialia》: 定向能沉积增材制造的相关同步加速器X射线成像和衍射
导读:本文通过镍基高温合金IN718的原位和操作同步加速器X射线成像和衍射研究揭示了定向能量沉积增材制造(DED-AM)的控制机理行为。 摘要 通过镍基高温合金IN718的原位和操作同步加速器X射线成像和衍射研究揭示了定...
-
2023-01-29·新的校准模型大幅降低金属3D打印熔池模拟的计算成本
增材制造 (AM) 过程的熔池规模数值建模可以为AM-增材制造零件的过程-属性-结构-性能关系提供预测能力和理论洞察力。 尽管数值模型能够解决复杂的多物理场问题,但考虑详细物理场和计算成本之间的权衡通常很重要。 因...
-
2023-01-29·中国科大提出热固性材料的新型3D打印方法
热固性材料在交联后形成三维空间网络结构,具有非常优异的力学性能和稳定性。近年来,热固性材料在软体机器人和柔性电子等领域扮演着愈发重要的角色。新型软体机器人对复杂结构与功能性提出了更高的需求,面向其开发...
-
2023-01-29·Nature: 哈佛大学Lewis团队开发旋转多材料3D打印(RM-3DP)技术实现异质螺旋亚三维结构
螺旋结构在自然界中无处不在,螺旋结构具有独特的机械性能和多功能性。到目前为止,模拟这些自然系统的合成结构是通过缠绕、扭曲和编织等方式实现的。 然而,这些制造方法无法同时在来自广泛材料的任意二维(2D) 和三...
-
2023-01-19·金属零件激光增材制造过程中发射的超细颗粒的表征
导读:据悉,本文对 不锈钢粉 末材料激光增材制造过程中产生的颗粒物(PM)进行了详细研究。 本文对不锈钢粉末材料激光增材制造过程中产生的颗粒物(PM)进行了详细研究。研究了三种不同的增材制造技术:选择性激光...
-
2023-01-19·哈佛大学《Nature》:具有亚体素控制的旋转多材料3D打印方法
导读:在自然界中,螺旋结构所具有的独特机械性能带给了科学家们无数的启发。 2023年1月18日,来自哈佛大学约翰保尔森工程与应用科学学院和威斯 生物 启发工程研究所的科研人员们将多材料和旋转两种要素结合并应用在...
-
2023-01-16·Nature:超细晶粒高强度钛合金的增材制造
据悉,本文报告了钛-铜合金的发展,这些合金在凝固过程中由于合金元素的分配而具有高的过冷能力,这可以克服增材制造过程中激光熔化区域中高热梯度的负面影响。 增材制造,通常被称为3D打印,是一种逐层构建零件的过...
-
2023-01-15·吕坚院士团队:低成本新策略3D打印高强耐热铝合金
金属增材制造(又称3D打印)技术作为一种尖端的材料成形手段,为复杂结构零部件设计与成型及高性能合金的设计与开发提供了新的机遇。在双碳约束背景下,市场对产品轻量化设计的需求与标准不断提高,在室温和高温下兼...
-
2023-01-12·中国石油大学《JMPT》:提出超声波辅助直写金属增材制造技术!
导读:与激光增材制造相比,直写金属增材制造具有以下优点:原理简单,设备体积小,制造成本低。但是,目前直接直写金属增材制造技术广泛使用含 金属粉末 悬浮液作为“墨水”,这需要成型后烧结,总是导致机械性能差...
-
2023-01-11·实现LPBF选区激光熔融工业化规模化应用,Dyndrite支持亚琛工业大学3D打印开放矢量格式 (OVF)
Dyndrite 是用于创建下一代数字制造硬件和软件的核心加速计算引擎的供应商,近日,Dyndrite宣布在 Dyndrite App Dev Kit 中支持ACAM(亚琛增材制造中心)的研究成员亚琛工业大学OVF开放矢量格式文件格式,将更高程度...
-
2023-01-11·为大规模制造而生,粘结剂喷射金属3D打印设备技术一览
粘结剂喷射金属3D打印技术,该技术于 1993 年在麻省理工学院发明,使用喷墨打印头将粘结剂施加到金属粉末床上,形成类似于金属注射成型 (MIM) 生产的部件的生坯。 然后,这些部件会经过一系列后处理(因具体技术而异...
-
2023-01-10·EVO 3D与ADAXIS和REV3RD合作,扩军机械臂颗粒3D打印阵容
2023年1月9日, 总部位于英国的3D打印机经销商EVO 3D宣布大幅扩展其EVO TECH 机械臂3D打印单元阵容。 EVO 3D在2022年推出了首款颗粒3D打印系统,这套系统允许用户部署各种机械臂、挤出机和 软件 组合,以实现高产量...
-
2023-01-10·Steakholder出资100万美元开发3D生物打印鳗鱼,科学家发现更实惠的养殖肉类
2023年1月9日,可持续肉类开发商Steakholder Foods和新加坡国立大学(NUS) 的研究人员宣布,他们各自的 食品 3D 生物 打印计划取得了重大进展。 新加坡国立大学的科学家们提出了一种植物基生物墨水,它可以完全被肉类...
-
2023-01-10·颠覆金属3D打印市场:ColdMetalFusion (CMF)冷金属3D打印
2022年最令人惊讶的发展之一是ColdMetalFusion (CMF) 联盟的成立,该联盟寻求使用由 AM Ventures 初创公司Headmade Materials开发的工艺流程和 3D 打印原料,以独特的方式进行金属粘合剂喷射。Headmade没有向市场推...
-
2023-01-08·电池冷板的创成式设计
电池冷电池板的设计正变得越来越具有挑战性。创成式设计已经进入了这一专业领域,以自动优化的方式助力设计师面对挑战。在本期谷.专栏中,安世亚太阐述了电池冷板借助拓扑优化的创成式设计基础,并通过传统设计方法...
-
2023-01-06·上海理工大学:增材制造铜合金 CuCrZr 和 CuCrNb 的现状综述
当前各种增材制造高热通量铜合金 CuCrZr 和 CuCrNb 合金是通过不同的工艺制造的,包括 L-PBF选区激光熔融3D打...